Expression of c-MYC under the control of GATA-1 regulatory sequences causes erythroleukemia in transgenic mice

نویسندگان

  • R C Skoda
  • S F Tsai
  • S H Orkin
  • P Leder
چکیده

To study oncogenesis in the erythroid lineage, we have generated transgenic mice carrying the human c-MYC proto-oncogene under the control of mouse GATA-1 regulatory sequences. Six transgenic lines expressed the transgene and displayed a clear oncogenic phenotype. Of these, five developed an early onset, rapidly progressive erythroleukemia that resulted in death of the founder animals 30-50 d after birth. Transgenic progeny of the sixth founder, while also expressing the transgene, remained asymptomatic for more than 8 mo, whereupon members of this line began to develop late onset erythroleukemia. The primary leukemic cells were transplantable into nude mice and syngeneic hosts. Cell lines were established from five of the six leukemic animals and these lines, designated erythroleukemia/c-MYC (EMY), displayed proerythroblast morphology and expressed markers characteristic of the erythroid lineage, including the erythropoietin receptor and beta-globin. Moreover, they also manifested a limited potential to differentiate in response to erythropoietin. Studies in the surviving transgenic line indicated that, contrary to our expectations, the transgene was not expressed in the mast cell lineage. That, coupled with the exclusive occurrence of erythroleukemia in all the transgenic lines, suggests that the GATA-1 promoter construct we have used includes regulatory sequences necessary for in vivo erythroid expression only. Additional sequences would appear to be required for expression in mast cells. Further, our results show that c-MYC can efficiently transform erythroid precursors if expressed at a vulnerable stage of their development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Key Regulatory Gene Expression in Erythroleukemia Differentiation

The characteristics of cellular and molecular mechanisms associated with cell proliferation and differentiation is important to understand malignancy. In this report we characterise a leukemic model, D5A1, to study the action of differentiation agent, cellular events and gene expression of the selected transcription factors. Cells induced with 4 mM hexamethylene bisacetamide (HMBA) caused signs...

متن کامل

Inhibition of DLX-7 homeobox gene causes decreased expression of GATA-1 and c-myc genes and apoptosis.

The DLX gene family is a family of divergent homeobox genes which are related to the Drosophila distal-less (Dll) gene and has been reported to be expressed primarily in the forebrain and craniofacial structures. We have previously identified a new member of this family, DLX-7. We now report that this gene is expressed in normal hematopoietic cells and leukemia cell lines with erythroid charact...

متن کامل

GATA factor transgenes under GATA-1 locus control rescue germline GATA-1 mutant deficiencies.

GATA-1 germline mutation in mice results in embryonic lethality due to defective erythroid cell maturation, and thus other hematopoietic GATA factors do not compensate for the loss of GATA-1. To determine whether the obligate presence of GATA-1 in erythroid cells is due to its distinct biochemical properties or spatiotemporal patterning, we attempted to rescue GATA-1 mutant mice with hematopoie...

متن کامل

GATA-1 transcription is controlled by distinct regulatory mechanisms during primitive and definitive erythropoiesis.

Transcription factor GATA-1 is required for the terminal differentiation of both the primitive and definitive erythroid cell lineages, and yet the regulatory mechanisms of GATA-1 itself are not well understood. To clarify how the GATA-1 gene is transcriptionally controlled in vivo, presumptive regulatory regions of the gene were tested by fusion to a reporter gene and then examined in transgeni...

متن کامل

Expression Cloning of Recombinant Escherichia coli lacZ Genes Encoding Cytoplasmic and Nuclear P-galactosidase Variants

Objective(s) Nonviral vector can be an attractive alternative to gene delivery in experimental study. In spite of some advantages in comparison with the viral vectors, there are still some limitations for efficiency of gene delivery in nonviral vectors. To determine the effective expression, the recombinant Escherichia coli lacZ genes were cloned into the different variants of pcDNA3.1 and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 181  شماره 

صفحات  -

تاریخ انتشار 1995